
UCL CDT DIS Note
1st May 2020

Surrogate Modelling of
the Tritium Breeding Ratio

Graham Van Goffriera and Petr Máneka

aUniversity College London

The tritium breeding ratio (TBR) is an essential quantity for the design of modern
and next-generation Tokamak nuclear fusion reactors. Representing the ratio between
tritium fuel generated in breeding blankets and fuel consumed during reactor runtime,
the TBR depends on reactor geometry and material properties in a complex man-
ner. In this work, we explored the training of surrogate models to produce a cheap
but high-quality approximation for a Monte Carlo TBR model in use at the UK
Atomic Energy Authority. We investigated possibilities for dimensional reduction of
its feature space, reviewed 9 families of surrogate models for potential applicability,
and performed hyperparameter optimisation. Here we present the performance and
scaling properties of these models, the fastest of which, an artificial neural network,
demonstrated R2 = 0.985 and a mean prediction time of 0.898 µs, representing a rel-
ative speedup of 8 ·106 with respect to the expensive MC model. We further present a
novel adaptive sampling algorithm, Quality-Adaptive Surrogate Sampling, capable of
interfacing with any of the individually studied surrogates. Our preliminary testing
on a toy TBR theory has demonstrated the efficacy of this algorithm for accelerating
the surrogate modelling process.

© 2020 University College London for the benefit of the Centre for Doctoral Training in Data Intensive
Sciences. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Contents

1 Introduction 3
1.1 Problem Description . 3

2 Data Exploration 5
2.1 Expensive Model Description . 5
2.2 Dataset Generation . 6
2.3 Dimensionality Reduction . 7

2.3.1 Principal Component Analysis . 7
2.3.2 Variogram Computations . 8
2.3.3 Autoencoders . 8

3 Methodology 9
3.1 Metrics . 10
3.2 Decoupled Sampling . 11

3.2.1 Experiments . 12
3.3 Adaptive Sampling . 13

4 Results 14
4.1 Results of Decoupled Sampling . 14

4.1.1 Hyperparameter Tuning . 14
4.1.2 Scaling Benchmark . 15
4.1.3 Model Comparison . 16

4.2 Results of Adaptive Sampling . 17

5 Conclusion 19

Appendices 21

A Online Materials Overview 21

B Detailed Results 21

2

1 Introduction

The analysis of massive datasets has become a necessary component of virtually all technical
fields, as well as the social and humanistic sciences, in recent years. Given that rapid improve-
ments in sensing and processing hardware have gone hand in hand with the data explosion, it is
unsurprising that software for the generation and interpretation of this data has also attained a
new frontier in complexity. In particular, simulation procedures such as Monte Carlo (MC) event
generation can perform physics predictions even for theoretical regimes which are not analytic-
ally tractable. The bottleneck for such procedures, as is often the case, lies in the computational
time and power which they necessitate.

Surrogate models, or metamodels, can resolve this limitation by replacing a resource-expensive
procedure with a much cheaper approximation [1]. They are especially useful in applications
where numerous evaluations of an expensive procedure are required over the same or similar do-
mains, e.g. in the parameter optimisation of a theoretical model. The term “metamodel” proves
especially meaningful in this case, when the surrogate model approximates a computational pro-
cess which is itself a model for a (perhaps unknown) physical process [2]. There exists a spectrum
between “physical” surrogates which are constructed with some contextual knowledge in hand,
and “empirical” surrogates which are derived purely from samples of the underlying expensive
model.

In this project, in coordination with the UK Atomic Energy Authority (UKAEA), we sought
to develop a surrogate model for the tritium breeding ratio (TBR) in a Tokamak nuclear fusion
reactor. Our expensive model was an MC-based neutronics simulation, Paramak1, which returns
a prediction of the TBR for a given configuration of a spherical Tokamak. We took an empir-
ical approach to the construction of this surrogate, and no results described here are explicitly
dependent on prior physics knowledge.

For the remainder of Section 1, we will define the TBR and set the context of this work within
the goals of the UKAEA. In Section 2 we will describe our datasets generated from the expensive
model for training and validation purposes, and the dimensionality reduction methods employed
to develop our understanding of the parameter domain. In Section 3 we will present our meth-
odologies for the comparison testing of a wide variety of surrogate modelling techniques, as well
as a novel adaptive sampling procedure suited to this application. After delivering the results of
these approaches in Section 4, we will give our final conclusions and recommendations for further
work.

1.1 Problem Description

Nuclear fusion technology relies on the production and containment of an extremely hot and
dense plasma. In this environment, by design similar to that of a star, hydrogen atoms attain
energies sufficient to overcome their usual electrostatic repulsion and fuse to form helium [3].
Early prototype reactors made use of the deuterium (2H, or D) isotope of hydrogen in order
to achieve fusion under more accessible conditions, but lead to limited success. The current
frontier generation of fusion reactors, such as the Joint European Torus (JET) and the under-
construction International Thermonuclear Experimental Reactor (ITER), make use of tritium

1 Provided by collaborator Jonathan Shimwell, at UKAEA.

3

(3H, or T) fuel for further efficiency gain. Experimentation at JET dating back to 1997 [4] has
made significant headway in validating deuterium-tritium (D-T) operations and constraining the
technology which will be employed in ITER in a scaled-up form.

However, tritium is much less readily available as a fuel source than deuterium. While at least one
deuterium atom occurs for every 5000 molecules of naturally-sourced water, and may be easily
distilled, tritium is extremely rare in nature. It may be produced indirectly through irradiation
of heavy water (D2O) during nuclear fission, but only at very low rates which could never sustain
industrial-scale fusion power.

Instead, modern D-T reactors rely on tritium breeding blankets, specialised layers of material
which partially line the reactor and produce tritium upon neutron bombardment, e.g. by

1
0n + 6

3Li −→ 3
1T + 4

2He (1)
1
0n + 7

3Li −→ 3
1T + 4

2He + 1
0n (2)

Figure 1: Typical single-null reactor configur-
ation as specified by BLUEPRINT [5]: 1 —
plasma, 2 — breeding blankets

where T represents tritium and 7Li, 6Li are the
more and less frequently occurring isotopes of lith-
ium, respectively. 6Li has the greatest tritium
breeding cross-section of all tested isotopes [3], but
due to magnetohydrodynamic instability of liquid
lithium in the reactor environment, a variety of
solid lithium compounds are preferred.

The TBR is defined as the ratio between tritium
generation in the breeding blanket per unit time
and tritium fuel consumption in the reactor. The
MC neutronics simulations previously mentioned
therefore must account for both the internal plasma
dynamics of the fusion reactor and the resultant
interactions of neutrons with breeding blanket ma-
terials. Neutron paths are traced through a CAD
model (e.g. Figure 1) of a reactor with modifiable
geometry.

The input parameters of the computationally-
expensive TBR model therefore fall into two
classes. Continuous parameters, including material
thicknesses and packing ratios, describe the geo-
metry of a given reactor configuration. Discrete
categorical parameters further specify all relevant
material sections, including coolants, armours, and
neutron multipliers. One notable exception is the
enrichment ratio, a continuous parameter denoting
the presence of 6Li. Our challenge, put simply, was
to produce a fast TBR function which takes these
same input parameters and approximates the MC
TBR model with the greatest achievable regression
performance.

4

2 Data Exploration

The initial step of our work is the study of the existing MC TBR model and its behaviour.
Following the examination of its features (simulation parameters), we present efficient means of
evaluating this model on large sets of points in high-performance computing (HPC) environment,
preprocessing techniques designed to adapt collected datasets for surrogate modelling, and our
attempts at feature space reduction to achieve the lowest possible number of dimensions.

2.1 Expensive Model Description

The expensive MC TBR model is fundamentally a Monte Carlo simulation based on the OpenMC
framework [6]. As input the software expects 18 parameters, discrete and continuous, that are
fully listed in Table 1. During evaluation, which usually takes units of seconds, a fixed number
of neutron events is generated, and the results are given in terms of the mean and the standard
deviation of the TBR aggregated over the simulated run. The former of these two we accept to
be the output TBR value that is subject to approximation.

Parameter Name Acronym Type Domain

B
la

n
k
et

Breeder fraction† BBF Continuous [0, 1]
Breeder 6Li enrichment fraction BBLEF Continuous [0, 1]
Breeder material BBM Discrete {Li2TiO3,Li4SiO4}
Breeder packing fraction BBPF Continuous [0, 1]

Coolant fraction† BCF Continuous [0, 1]
Coolant material BCM Discrete {D2O,H2O,He}
Multiplier fraction† BMF Continuous [0, 1]
Multiplier material BMM Discrete {Be,Be12Ti}
Multiplier packing fraction BMPF Continuous [0, 1]

Structural fraction† BSF Continuous [0, 1]
Structural material BSM Discrete {SiC, eurofer}
Thickness BT Continuous [0, 500]

F
ir

st
w

a
ll

Armour fraction‡ FAF Continuous [0, 1]

Coolant fraction‡ FCF Continuous [0, 1]
Coolant material FCM Discrete {D2O,H2O,He}
Structural fraction‡ FSF Continuous [0, 1]
Structural material FSM Discrete {SiC, eurofer}
Thickness FT Continuous [0, 20]

Table 1: Input parameters supplied to the MC TBR simulation in alphabetical order. Groups of fractions
marked†‡ are independently required to sum to one.

In the following sections, we often reference TBR points or samples. These are simply vectors
in the feature space generated by Cartesian product of domains of all features—parameters
from Table 1.

Since most surrogate models that we employ assume overall continuous numerical inputs, we take
steps to unify our feature interface in order to attain this property. In particular, we transform
discrete features by embedding each such feature using standard one-hot encoding. This option is
available to us since discrete domains that generate our feature space are finite in cardinality and

5

relatively small in size. And while it helps us towards unification, this step comes at the expense
of increasing the dimensionality of the feature space. This is further discussed in Section 2.3.

2.2 Dataset Generation

In our work, we deliberately make no assumptions about the internal properties of the MC TBR
simulation, effectively treating it as a black box model. This limits our means of studying its
behaviour to inspection of its outputs at various points in the feature space. We therefore require
sufficiently large and representative quantities of samples to ensure that surrogates can be trained
to approximate the MC TBR model accurately.

With a grid search in such a high-dimensional domain clearly intractable, we selected uniform
pseudo-random sampling2 to generate large amounts of feature configurations that we consider
to be independent and unbiased. For evaluation of the expensive MC TBR model, we utilise
parallelisation offered by the HPC infrastructure available at UCL computing facilities. To
this end, we designed and implemented the Approximate TBR Evaluator—a Python software
package capable of sequential evaluation of the multi-threaded OpenMC simulation on batches
of previously generated points in the feature space. Having deployed ATE at the UCL Hypatia
cluster3, we completed three data generation runs that are summarised in Table 2.

Samples Batch division trun teval. [s] Description

0 100 000 100× 1000 2 days, 23 h 7.88± 2.75 Testing run using old MC TBR version.
1 500 000 500× 1000 13 days, 20 h 7.78± 2.81 Fully uniform sampling in the entire domain.
2 400 000 400× 1000 10 days 7.94± 2.60 Mixed sampling, discrete features fixed.

Table 2: Parameters of sampling runs. Here, trun denotes the total run time (including waiting in the
processing queue), and teval. is the mean evaluation time of the MC TBR model (per single sampled point).

Skipping run zero, which was performed using an older, fundamentally different version of the
MC TBR software, and was thus treated as a technical proof-of-concept, we generated a total
of 900 000 samples in two runs. While the first run featured fully uniform sampling of the
unrestricted feature space, the second run used a more elaborate strategy. Interested in further
study of relationships between discrete and continuous features, we selected four assignments of
discrete features (listed in Table 3) and fixed them for all points, effectively slicing the feature
space into four corresponding subspaces. In order to achieve comparability, all such slices use
the same samples for the values of continuous features.

Since some surrogate modelling methods applied in this work are not scale-invariant or perform
suboptimally with arbitrarily scaled inputs, all obtained TBR samples (features and TBR values)
were standardised prior to further use. In this commonly used statistical procedure, features and
regression outputs are independently scaled and offset to attain zero mean and unit variance.

2 Continuous and discrete parameters are drawn from a corresponding uniform distribution over their domain, as
defined in Table 1. For repeatability, each run uses a seed equal to its number.

3 The Hypatia RCIF partition is comprised of 4 homogeneous nodes. Each node is installed with 376 GB RAM
and 40 Intel® Xeon® Gold 6148 CPUs of clock frequency 2.40 GHz.

6

Discrete feature assignment

Batches BBM BCM BMM BSM FCM FSM

0-99 Li4SiO4 H2O Be12Ti eurofer H2O eurofer
100-199 Li4SiO4 He Be12Ti eurofer H2O eurofer
200-299 Li4SiO4 H2O Be12Ti eurofer He eurofer
300-399 Li4SiO4 He Be12Ti eurofer He eurofer

Table 3: Selected discrete feature assignments corresponding to slices in run 2.

2.3 Dimensionality Reduction

Model training over high-dimensional parameter spaces (illustrated in Figure 2) may be improved
in many aspects by carefully reducing the number of variables used to describe the space. For
many applications, feature selection strategies succeed in identifying a sufficiently representative
subset of the original input variables. However, all given variables were assumed to be physically
relevant to the MC TBR model. On the other hand, feature extraction methods aim to identify
a transformation of the parameter space which decreases dimensionality; even if no individual
parameter is separable from the space, some linear combinations of parameters or nonlinear
functions of parameters may be.

0 5 10 15 20
FT

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0 100 200 300 400 500
BT

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
BBLEF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
BBPF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
BMPF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
BMF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
BBF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
BSF

0.0

0.5

1.0

1.5

2.0

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
FAF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
FSF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

0.0 0.2 0.4 0.6 0.8 1.0
FCF

0.0

0.5

1.0

1.5

2.0

2.5

T
B

R

Figure 2: Marginalised dependence of TBR on the choice of continuous features in 500 000 points generated
in run 1. Points are coloured by density.

2.3.1 Principal Component Analysis

To pursue linear feature extraction, principal component analysis (PCA) [7] was performed via
SciKit Learn [8] on a set of 300 000 uniform samples of the MC TBR model.

7

Figure 3 shows the resultant cumulative variance of the 11 principal components. The similar
share of variance among all features reveals irreducibility of the TBR model by linear methods.

Figure 3: Cumulative variance for optimal features identified by PCA

2.3.2 Variogram Computations

Figure 4: Semivariograms for MC TBR data with
coolant materials: (a) He, (b) H2O, (c) D2O

Kriging is a geostatistical surrogate modelling
technique which relies on correlation functions
over distance (lag) in the feature space [9]. Al-
though kriging performed poorly for our use
case due to high dimensionality, these cor-
relation measures gave insight into similarit-
ies between discrete-parameter slices of the
data.

Figure 4 shows the Matheron semivariance [10]
for three discrete slices with coolant material
varied, but all other discrete parameters fixed.
Fits [11] to the Matérn covariance model con-
firmed numerically that the coolant material is
the discrete parameter with the greatest dis-
tinguishability in the MC TBR model.

2.3.3 Autoencoders

Autoencoders [12] are a family of approaches
to dimensionality reduction driven by artifi-
cial neural networks (ANNs). Faced with a
broad selection of alternatives, we opted for
a conventional autoencoder architecture with
a single hidden layer. While it follows that
the input and output layers of such network
are sized to accommodate the analysed data-
set, the hidden layer, also called the bottleneck,
allows for variable number of neurons that rep-
resent a smaller subspace. By scanning over a
range of bottleneck widths and investigating
relative changes in the validation loss, we as-
sess the potential for dimensional reduction.

8

D
en

se
(W

1
)

D
en

se
(W

0
)

D
en

se
(W

0
)

Figure 5: Autoencoder
with input width W0 and
bottleneck width W1.
Here, Dense(N) denotes
a fully-connected layer of
N neurons.

In particular, we consider two equally-sized sets4 of samples: (a) a sub-
set of data obtained from run 1 and (b) a subset of a single slice ob-
tained from run 2. Our expectation was that while the former case
would provide meaningful insights into correlations within the feature
space, the latter would validate our autoencoder implementation by
analysing a set of points that are trivially reducible in dimensionality
due to a number of fixed discrete features.

The results of both experiments are shown in Figure 6. Consistent with
our motivation, in each plot we can clearly identify a constant plateau
of low error in the region of large dimensionality followed by a point,
from which a steep increase is observed. We consider this critical point
to mark the largest viable dimensional reduction without significant
information loss. With this approach we find that the autoencoder
was able to reduce the datasets into a subspace of 18 dimensions in
the first case and 10 dimensions in the second case.

0 5 10 15 20 25 30
Bottleneck width

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

id
at

io
n

lo
ss

(M
S

E
)

Autoencoder loss

Input dimension

Reduced dimension

0 5 10 15 20 25 30
Bottleneck width

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

id
at

io
n

lo
ss

(M
S

E
)

Autoencoder loss

Input dimension

Reduced dimension

Figure 6: Autoencoder loss scan on the full
feature space (top) and a single slice (bot-
tom). Dimensional reduction is indicated
by a green arrow.

Confirming our expectation that in the latter, trivial
case the autoencoder should achieve greater dimensional
reduction, we are inclined to believe that our implement-
ation is indeed operating as intended. However, we must
also conclude that in both examined cases this method
failed to produce a reduction that would prove super-
ior to a näıve approach.5 This is consistent with the
previous results obtained by PCA and kriging.

3 Methodology

Assuming that data is appropriately treated to elimin-
ate redundant features, we proceed to propose surrog-
ate models and criteria used for their evaluation. The
task all presented surrogates strive to solve can be for-
mulated using the language of conventional regression
problems. In this section, we focus on interpretation in
the scheme of supervised learning with decoupled and
adaptive sampling.

Labeling the expensive MC TBR model f(x), a sur-
rogate is a mapping f̂(x) that yields similar images as
f(x). In other words, f(x) and f̂(x) minimise a selec-
ted dissimilarity metric. Furthermore, in order to be
considered viable, surrogates are required to achieve ex-
pected evaluation time lower than that of f(x).

4 Each set contained 100 000 samples from batches 0-99 of the corresponding runs.
5 In both tested cases we can trivially eliminate 6 dimensions due to overdetermination of one-hot-encoded cat-

egorical features, and 2 dimensions corresponding to sum-to-one constraints. Furthermore, in the single slice
case we may omit 6 additional dimensions due to fixed feature assignment.

9

In the decoupled sampling approach that is further described in Section 3.2, we first gather

a sufficiently large training set of samples T =
{(
x(i), f

(
x(i)
))}N

i=1
to describe the behaviour

of f(x) across its domain. Depending on a specific model family and appropriate choice of
its hyperparameters, surrogate models f̂(x) are trained to minimise the empirical risk Remp.

with respect to T and a model-specific loss function L, where the empirical risk is defined as

Remp.(f̂ | T ,L) = 1
N

∑N
i=1 L

(
f̂(x(i)), f(x(i))

)
.

The adaptive sampling approach that we characterise in Section 3.3 can be viewed as a more
general problem. Rather than fixing the training set T for the entire duration of training,
multiple sets {Tk}Kk=0 are used, such that Tk−1 ⊂ Tk for all k > 1. The first set T0 is initialised
randomly to provide a burn-in, and is repeatedly extended in epochs, whereby each epoch trains
a new surrogate f̂k(x) on Tk using the supervised learning procedure, evaluates its performance,
and forms a new set Tk+1 by adding more samples to Tk. This permits the learning algorithm
to condition the selection of new samples in Tk+1 on the evaluation results of f̂k(x) in order to
maximise improvement of surrogate performance over complex regions within the feature space.

3.1 Metrics

Aiming to provide objective comparison of a diverse set of surrogate model families, we define a
multitude of metrics to be tracked during experiments. Following the motivation of this work,
two desirable properties of surrogates arise: (a) their capability to approximate the TBR MC
model well and (b) their prediction time. An ideal surrogate would maximise the former while
minimising the latter.

Table 4 provides an exhaustive listing and description of metrics recorded in our experiments.
For regression performance analysis, we include a selection of absolute metrics to assess the ap-
proximation capability of surrogates, and set practical bounds on the expected uncertainty of
their predictions. In addition, we also track relative measures that are better-suited for com-
parison between this work and others, as they maintain invariance with respect to the selected
domain and image space. For complexity analysis, surrogates are assessed in terms of wall time6

elapsed during training and prediction. This is motivated by common practical use cases of our
work, where models are trained and used as drop-in replacements for the expensive MC TBR
model. Since training set sizes remain to be determined, all times are reported per a single data-
point. Even though some surrogates support acceleration by means of parallelisation, sequential
processing of samples was ensured to achieve comparability between considered models.7

To prevent undesirable bias in results due to training set selection, all metrics are collected in the
scheme of k-fold cross-validation with a conventional choice of k = 5. In this setting, a sample
set is uniformly divided into 5 disjoint folds, each of which is used as a test set for models trained
on the remaining 4.8 Having repeated the same experiment for each such run, the overall value
of individual metrics is reported in terms of their mean and standard deviation over all folds.

6 Real time elapsed during computation measured by a chronometer, here by means of the Python time package.
7 The only exception to this are artificial neural networks, which require considerable amount of processing power

for training on conventional CPU architectures.
8 Unless explicitly stated otherwise, we use 1 fold for testing and the 4 remaining folds for training. This gives

80% to 20% train-test ratio.

10

Regression performance metrics Mathematical formulation / description Ideal value [units]

Mean absolute error (MAE)
∑N

i=1 |y
(i) − ŷ(i)|/N 0 [TBR]

Standard error of regression S StdDevN
i=1

{
|y(i) − ŷ(i)|

}
0 [TBR]

Coefficient of determination R2 1−
∑N

i=1

(
y(i) − ŷ(i)

)2
/
∑N

i=1

(
y(i) − y

)2
1 [rel.]

Adjusted R2 1− (1−R2)(N − 1)/(N − P − 1) 1 [rel.]

Complexity metrics

Mean training time ttrn. (wall training time of f̂(x))/N0 0 [ms]

Mean prediction time tpred. (wall prediction time of f̂(x))/N 0 [ms]
Relative speedup ω (wall evaluation time of f(x))/(Ntpred.) →∞ [rel.]

Table 4: Metrics recorded in supervised learning experiments. In formulations, we work with a training
set of size N0 and a test set of size N , TBR values y(i) = f(x(i)) and ŷ(i) = f̂(x(i)) denote images of
the ith testing sample in the expensive model and the surrogate respectively. Furthermore, the mean
y =

∑N
i=1 y

(i)/N and P is the number of input features.

3.2 Decoupled Sampling

In our experiments, we evaluate and compare surrogates in effort to optimise against metrics
described in Section 3.1. To attain meaningful and practically usable results, we require a suf-
ficiently large and diverse pool of surrogate families to review. This is described by the listing
in Table 5. The presented selection of models includes basic techniques suitable for linear re-
gression enhanced by the kernel trick or dimension lifting, methods driven by decision trees,
instance-based learning models, ensemble regressors, randomised algorithms, artificial neural
networks and mathematical approaches developed specifically for the purposes of surrogate mod-
elling. For each of these families, a state-of-the-art implementation was selected and adapted to
operate with TBR samples.

Surrogate Acronym Implementation Hyperparameters

Support vector machines [13] SVM SciKit Learn [8] 3
Gradient boosted trees [14–16] GBT SciKit Learn 11
Extremely randomised trees [17] ERT SciKit Learn 7
AdaBoosted decision trees [18] ABT SciKit Learn 3
Gaussian process regression [19] GPR SciKit Learn 2
k nearest neighbours KNN SciKit Learn 3
Artificial neural networks ANN Keras (TensorFlow) [20] 2
Inverse distance weighing [21] IDW SMT [22] 1
Radial basis functions RBF SMT 3

Table 5: Considered surrogate model families.

While some of the presented model families are clearly determined by an explicit choice of a
learning algorithm, others may vary considerably depending on hyperparameter configuration.
A good example of the latter group are artificial neural networks, which in addition to con-
ventional hyperparameters enable to control network architecture through selection from various
parametric graph templates (illustrated in Figure 7). This allows us to realise a simplistic network
architecture search during the hyperparameter tuning procedure.

11

D
en

se
(W

/
2
)

D
en

se
(W

)

D
en

se
(W

)

D
en

se
(W

)

(a) 1h3f(W)

D
en

se
(W

)

D
en

se
(W

)

D

(b) df(D,W)

D
en

se
(W

/
3
)

D
en

se
(W

)

D
en

se
(2
W

/
3
)

(c) 3pyramid(W)

D
en

se
(W

/
3
)

D
en

se
(2
W

/
3
)

D
en

se
(W

/
3
)

D
en

se
(W

)

D
en

se
(2
W

/
3
)

(d) 5diamond(W)

Figure 7: Selected parametric neural network architectures. All layers except the last use ReLU activation.
Prediction information flow is indicated by arrows.

3.2.1 Experiments

The presented surrogate candidates are evaluated in four experimental cases:

1. Hyperparameter tuning in a simplified domain.

2. Hyperparameter tuning in full domain.

3. Scaling benchmark.

4. Model comparison.

The aim of the initial experiments is to use a relatively small subset of collected TBR samples
to determine hyperparameters of considered surrogates. Since this process requires learning the
behaviour of an unknown, possibly expensive mapping – here a function that assigns cross-
validated metrics to a point in the hyperparameter domain – it in many aspects mirrors the
primary task of this work with the notable extension of added utility to optimise. In order to
avoid undesirable exponential slowdown in exhaustive searches of a possibly high-dimensional
parameter space, Bayesian optimisation [23] is employed as a standard hyperparameter tuning
algorithm. We set its objective to maximise R2 and perform 1000 iterations.9

In the first experiment, efforts are made to maximise the possibility of success in surrogates that
are prone to suboptimal performance in discontinuous spaces. This follows the notion that, if
desired, performance of such models may be replicated by training separate instances to model
each continuous subregion of the domain independently. To this end, data are limited to a
single slice from run 2, and discrete features are completely withheld from evaluated surrogates.
This is repeated for each of the four available slices to investigate variance in behaviour under
different discrete feature assignments. The second experiment conventionally measures surrogate
performance on the full feature space. Here, in extension of the previous case, surrogates work
with samples comprised of discrete as well as continuous features.

The objective of the last two experiments is to exploit the information gathered by hyperpara-
meter tuning. In the third experiment, the 20 best-performing hyperparameter configurations
of each family (with respect to R2) are used to perform training on progressively larger sets
to investigate their scaling properties. Following that, the fourth experiment aims to produce

9 Hyperparameter tuning of each surrogate family was terminated after 2 days. Instances that reached this limit
may be identified in Tables 7 and 8 in the Appendix.

12

surrogates suitable for practical use by retraining selected well-scaling instances on large training
sets to satisfy the goals of this work.

3.3 Adaptive Sampling

Figure 8: Schematic of QASS algorithm

All of the surrogate modelling techniques
studied in this project face a common
challenge: their accuracy is limited by
the quantity of training samples which
are available from the expensive MC
TBR model. Adaptive sampling pro-
cedures can improve upon this limita-
tion by taking advantage of statistical
information which is accumulated dur-
ing the training of any surrogate model.
Rather than training the surrogate on
a single sample set generated according
to a fixed strategy, sample locations are
chosen periodically during training so as
to best suit the model under considera-
tion.

Adaptive sampling techniques appear
frequently in the literature and have
been specialised for surrogate model-
ling. Garud’s [24] “Smart Sampling
Algorithm” achieved notable success
by incorporating surrogate quality and
crowding distance scoring to identify op-
timal new samples, but was only tested on
a single-parameter domain. We theorised
that a nondeterministic sample generation approach, built around Markov Chain Monte Carlo
methods (MCMC), would fare better for high-dimensional models by more thoroughly exploring
all local optima in the feature space. MCMC produces a progressive chain of sample points,
each drawn according to the same symmetric proposal distribution10 from the prior point. These
sample points will converge to a desired posterior distribution, so long as the acceptance prob-
ability for these draws has a particular functional dependence on that posterior value (see [26]
for a review).

Many researchers have embedded surrogate methods into MCMC strategies for parameter optim-
isation [27, 28], in particular the ASMO-PODE algorithm [29] which makes use of MCMC-based
adaptive sampling to attain greater surrogate precision around prospective optima. Our novel
approach draws inspiration from ASMO-PODE, but instead uses MCMC to generate samples
which increase surrogate precision throughout the entire parameter space.

10 An adaptive MCMC procedure [25], which adjusts an ellipsoidal proposal distribution to fit the posterior, was
also implemented but not fully tested.

13

We designed the Quality-Adaptive Surrogate Sampling algorithm (QASS, Figure 8) to iterat-
ively increment the training/test set with sample points which maximise surrogate error and
minimise a crowding distance metric (CDM) [30] in feature space. On each iteration following
an initial training of the surrogate on N uniformly random samples, the surrogate was trained
and absolute error calculated. MCMC was then performed on the error function generated by
performing nearest-neighbor interpolation on these test error points. The resultant samples were
culled by 50% according to the CDM, and then the n highest-error candidates were selected for
reintegration with the training/test set, beginning another training epoch. Validation was also
performed during each iteration on independent, uniformly-random sample sets.

4 Results

Having outlined a variety of models and metrics tracked for the purposes of their objective
comparison, we proceed to present and discuss our results in the next sections.

4.1 Results of Decoupled Sampling

We begin by comparing the performance of a diverse set of surrogate families on previously
generated samples of the expensive MC TBR model. Through the four experimental cases
described in Section 3.2.1, we aim to study properties of the considered models in terms of
regression performance, training and prediction time.

4.1.1 Hyperparameter Tuning

The first two experiments perform Bayesian optimisation to maximise R2 in a cross-validation
setting as a function of model hyperparameters. While in the first experiment we limit training
and test sets to the scope of four selected slices of the feature space, in the second experiment
we lift this restriction to examine surrogate capability to model a more complex domain.

The results displayed in Figure 9 (and listed in Table 7 in the Appendix) indicate that in the
first experiment, GBTs clearly appear to be the most accurate as well as the fastest surrogate
family in terms of mean prediction time. Following that, we note that ERTs, SVMs and ANNs
also achieved satisfactory results with respect to both examined metrics. While the remainder
of tested surrogate families does not exhibit problems in complexity, its regression performance
falls below average.

The results of the second experiment, shown in Figure 10 (and listed in Table 8 in the Appendix),
seem to confirm our expectations. Compared to the previous case, we observe that many sur-
rogate families consistently achieved worse regression performance and prediction times. The
least affected models appear to be GBTs, ANNs and ERTs, which are known to be capable of
capturing relationships involving mixed feature types that were deliberately withheld in the first
experiment. With only negligible differences, the first two of these families appear to be tied
for the best performance as well as the shortest prediction time. We observe that ERTs and
RBFs also demonstrated satisfactory results, relatively outperforming the remaining surrogates
in terms of regression performance, and in some cases also in prediction time.

14

0.0 0.1 0.2 0.3 0.4 0.5
Prediction time per sample [ms]

0.5

0.6

0.7

0.8

0.9

1.0

R
eg

re
ss

io
n

p
er

fo
rm

an
ce

(R
2
)

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

(a) Run 2, batches 0-2

0.0 0.1 0.2 0.3 0.4 0.5
Prediction time per sample [ms]

0.5

0.6

0.7

0.8

0.9

1.0

R
eg

re
ss

io
n

p
er

fo
rm

an
ce

(R
2
)

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

(b) Run 2, batches 100-102

0.0 0.1 0.2 0.3 0.4 0.5
Prediction time per sample [ms]

0.5

0.6

0.7

0.8

0.9

1.0

R
eg

re
ss

io
n

p
er

fo
rm

an
ce

(R
2
)

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

(c) Run 2, batches 200-202

Figure 9: 20 best-performing surrogates per each considered family, plotted in terms of complexity
(as tpred.) and regression performance (as R2) on selected slices of run 2, evaluated in experiment 1.
Here, batches refer to subsets of training and test datasets that may be matched to slices using Table 3.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction time per sample [ms]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
eg

re
ss

io
n

p
er

fo
rm

an
ce

(R
2
)

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

Figure 10: Results of experiment 2,
plotted analogously to Figure 9.

Following both hyperparameter tuning experiments, we con-
clude that while domain restrictions employed in the first case
have proven effective in improving the regression performance
of some methods, this result has fluctuated considerably de-
pending on the selected slices. Furthermore, in all instances
the best results were achieved by families of surrogates that
were nearly unaffected by this modification.

4.1.2 Scaling Benchmark

In the third experiment we examine surrogate scaling prop-
erties by correlating metrics of interest with training set size.
Firstly, the results shown in Figure 11a (and listed in Table 9 in the Appendix) suggest that
the most accurate families from the previous experiments consistently maintain their relative
advantage over others, even as we introduce more training points. While such families achieve
nearly comparable performance on the largest dataset, in the opposite case tree-based approaches
clearly outperform ANNs. This can be observed particularly on sets of sizes up to 6000.

Next, we examine scaling behaviour in terms of the mean training time (displayed in Figure 11b
and listed in Table 10 in the Appendix). Consistent with our expectation, the shortest times
were achieved by instance-based learning methods (e.g. KNN, IDW) that are trained trivially
at the expense of increased lookup complexity later during prediction. Furthermore, we observe
that the majority of tree-based algorithms also perform and scale well, unlike RBFs and GPR
which appear to behave superlinearly. We note that ANNs, which are the only family to utilise
parallelisation during training, show an inverse scaling characteristic. Our conjecture is that
this effect may be caused by a constant multi-threading overhead that possibly dominates the
training process on relatively small training sets.

Finally, we study scaling with respect to the mean prediction time (shown in Figure 11c and
listed in Table 11 in the Appendix). Our initial observation is that all tested families with the
exception of previously mentioned instance-based models offer desirable characteristics overall.

15

2000 4000 6000 8000 10000 12000 14000 16000
Training set size

0.0

0.2

0.4

0.6

0.8

R
eg

re
ss

io
n

p
er

fo
rm

an
ce

(R
2
)

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

(a) Regression performance (as R2)

2000 4000 6000 8000 10000 12000 14000 16000
Training set size

0

5

10

15

20

25

30

T
ra

in
in

g
ti

m
e

p
er

sa
m

p
le

[m
s]

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

(b) Complexity (as ttrn.)

2000 4000 6000 8000 10000 12000 14000 16000
Training set size

0

1

2

3

4

5

6

7

P
re

d
ic

ti
on

ti
m

e
p

er
sa

m
p

le
[m

s]

SVM

GBT

ERT

ABT

GPR

KNN

ANN

IDW

RBF

(c) Complexity (as tpred.)

Figure 11: Various metrics collected during experiment 3 (scaling benchmark) displayed as a function of
training set size.

Analogous to previous experiments, GBTs, ABTs and ANNs appear to be tied, as they not
only exhibit comparable times but also similar scaling slopes. Following that, we notice a clear
hierarchy of ERTs, SVMs, GPR and RBFs, trailed by IDW and KNNs.

4.1.3 Model Comparison

In the fourth experiment proposed in Section 3.2.1, we exploit previously collected information
to produce surrogates with desirable properties for practical use. We aim to create models that
yield: (a) the best regression performance regardless of other features, (b) acceptable performance
with the shortest mean prediction time, or (c) acceptable performance with the smallest training
set. To this end, we trained 8 surrogates that are presented in Figure 12 and Table 6.

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

2.5

P
re

d
ic

te
d

T
B

R

MAE = 0.008585
S = 0.011885
R2 = 0.998152
R2

adj. = 0.998152

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.024634
S = 0.031499
R2 = 0.986202
R2

adj. = 0.986198

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.057670
S = 0.058917
R2 = 0.942217
R2

adj. = 0.942178

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.070818
S = 0.066410
R2 = 0.920779
R2

adj. = 0.919694

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.051033
S = 0.055558
R2 = 0.951106
R2

adj. = 0.951073

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.067856
S = 0.071096
R2 = 0.918668
R2

adj. = 0.918393

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.067836
S = 0.074189
R2 = 0.913457
R2

adj. = 0.913223

Ideal model

Trained model

Data

0.0 0.5 1.0 1.5 2.0
True TBR

0.0

0.5

1.0

1.5

2.0

P
re

d
ic

te
d

T
B

R

MAE = 0.061678
S = 0.091997
R2 = 0.894604
R2

adj. = 0.894533

Ideal model

Trained model

Data

Figure 12: Regression performance of models 1-4 (row 1, from the left) and 5-8 (row 2) trained in experi-
ment 4 (model comparison), viewed as true vs. predicted TBR on a test set of a selected cross-validation
fold. Points are coloured by density.

16

Having selected ANNs, GBTs, ERTs, RBFs and SVMs based on the results of experiments 2-3,
we utilised the best-performing hyperparameters. In pursuit of goal (a), the best approximator
(no. 1, ANN) achieved R2 = 0.998 and mean prediction time tpred. = 1.124 µs. These correspond
to a standard error S = 0.013 and a relative speedup ω = 6 916 416× with respect to the MC TBR
evaluation baseline measured during run 1 (see Table 2 for details). Satisfying goal (b), the fastest
model (no. 2, ANN) achieved R2 = 0.985, tpred. = 0.898 µs, S = 0.033 and ω = 8 659 251×. While
these surrogates were trained on the entire available set of 500 000 datapoints, to satisfy goal (c)
we also trained a more simplified model (no. 4, GBT) that achieved R2 = 0.913, tpred. = 6.125 µs,
S = 0.072 and ω = 1 269 777× with a set of size only 10 000.

Regression performance Complexity

Model |T | MAE [TBR] S [TBR] R2 [rel.] R2
adj. [rel.] ttrn. [ms] tpred. [ms] ω [rel.]

1 (ANN) 500 0.009 ± 0.000 0.013 ± 0.001 0.998 ± 0.000 0.998 ± 0.000 3.659± 0.035 0.001± 0.000 6 916 416×
2 (ANN) 500 0.025± 0.001 0.033± 0.001 0.985± 0.001 0.985± 0.001 2.989± 0.026 0.001 ± 0.000 8 659 251×
3 (GBT) 200 0.058± 0.001 0.059± 0.000 0.941± 0.001 0.941± 0.001 2.221± 0.010 0.007± 0.000 1 169 933×
4 (GBT) 10 0.071± 0.002 0.072± 0.003 0.913± 0.006 0.912± 0.006 1.621 ± 0.008 0.006± 0.000 1 269 777×
5 (ERT) 200 0.051± 0.000 0.056± 0.000 0.950± 0.001 0.950± 0.001 2.634± 0.010 0.214± 0.004 36 308×
6 (ERT) 40 0.068± 0.000 0.072± 0.000 0.917± 0.001 0.917± 0.001 2.368± 0.005 0.188± 0.008 41 370×
7 (RBF) 50 0.068± 0.001 0.077± 0.002 0.910± 0.003 0.910± 0.003 3.453± 0.019 1.512± 0.016 5143×
8 (SVM) 200 0.062± 0.000 0.094± 0.002 0.891± 0.003 0.891± 0.003 33.347± 0.382 2.415± 0.011 3220×

Table 6: Results of experiment 4. Here, figures are reported over 5 cross-validation folds, |T | denotes
cross-validation set size (×103) and ω is a relative speedup with respect to teval. = 7.777 s measured in
the MC TBR model during run 1 (see Table 2). The best-performing metrics are highlighted in bold.

Overall we found that due to their superior performance, boosted tree-based approaches seem to
be advantageous for fast surrogate modelling on relatively small training sets (up to the order
of 104). Conversely, while neural networks perform poorly in such a setting, they dominate on
larger training sets (at least of the order of 105) both in terms of regression performance and
mean prediction time.

4.2 Results of Adaptive Sampling

0 1
Continuous parameter x1

0

1

C
on

ti
n
u

ou
s

p
ar

am
et

er
x

2

0.2

0.40.6

0.
6

0.6

0.6

0.8
0.8

0.8

0.8

1.0

1.0

1.0

1.2

1.2

1.2

1.2

1.4

1.
4

1.4

1.4
1.6

1.8

Figure 13: Sinusoidal toy TBR theory over
two continuous parameters, n = 1.

In order to test our QASS prototype, several functional
toy theories for TBR were developed as alternatives to
the expensive MC model. By far the most robust of
these was the following sinusoidal theory with adjustable
wavenumber parameter n:

TBR =
1

|C|
∑
i∈C

[1 + sin(2πn(xi − 1/2))] (3)

plotted in Figure 13 for n = 1 and two continuous para-
meters C. ANNs trained on this model demonstrated similar performance to those on the expens-
ive MC model. QASS performance was verified by training a 1h3f(256) ANN on the sinusoidal
theory for varied quantities of initial, incremental, and MCMC candidate samples. Although the
scope of this project did not include thorough searches of this hyperparameter domain, sufficient
runs were made to identify some likely trends.

17

An increase in initial samples with increment held constant had a strong impact on final surrogate
precision, an early confirmation of basic functionality. An increase in MCMC candidate samples
was seen to have a positive but very weak effect on final surrogate precision, suggesting that the
runtime of MCMC on each iteration can be limited for increased efficiency. The most complex
dynamics arose with the adjustment of sample increment, shown in Figure 14. For each tested
initial sample quantity N , the optimal number of step samples was seen to be well-approximated
by
√
N . The plotted error trends suggest that incremental samples larger than this optimum

give slower model improvement on both the training and evaluation sets, and a larger minimum
error on the evaluation set. This performance distinction is predicted to be even more significant
when trained on the expensive MC model, where the number of sample evaluations will serve as
the primary bottleneck for computation time.

20000 40000 60000 80000 100000
Number of Samples

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Er
ro

r

Varied Increment for 10000 Initial Samples
MAE -- 100 new samples per iter
E_MAE -- 100 new samples per iter
MAE -- 300 new samples per iter
E_MAE -- 300 new samples per iter
MAE -- 500 new samples per iter
E_MAE -- 500 new samples per iter

0 50 100 150 200 250 300
Number of Iterations

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Er
ro

r

Varied Increment for 10000 Initial Samples
MAE -- 100 new samples per iter
E_MAE -- 100 new samples per iter
MAE -- 300 new samples per iter
E_MAE -- 300 new samples per iter
MAE -- 500 new samples per iter
E_MAE -- 500 new samples per iter

Figure 14: QASS absolute training error over total sample quantity (left) and number of iterations (right).
MAE represents surrogate error on the adaptively-sampled training/test set, and E MAE on the inde-
pendent evaluation sets.

The plateau effect in surrogate error on the evaluation set, seen in Figure 14, was universal to all
configurations and thought to warrant further investigation. At first this was suspected to be a
residual effect of retraining the same ANN instance without adjustment to data normalisation.
A “Goldilocks scheme” for checking normalisation drift was implemented and tested, but did
not affect QASS performance. Schemes in which the ANN is periodically retrained were also
discarded, as the retention of network weights from one iteration to the next was demonstrated
to greatly benefit QASS efficiency. Further insight came from direct comparison between QASS
and a baseline scheme with uniformly random incremental samples, shown in Figure 15.

Such tests revealed that while QASS has unmatched performance on its own adaptively-sampled
training set, it is outperformed by the baseline scheme on uniformly-random evaluation sets. We
suspected that while QASS excels in learning the most strongly peaked regions of the TBR theory,
this comes at the expense of precision in broader, smoother regions where uniformly random
sampling suffices. Therefore a mixed scheme was implemented, with half MCMC samples and
half uniformly random samples incremented on each iteration, which is also shown in Figure 15.
An increase in initial sample size was observed to also resolve precision in these smooth regions
of the toy theory, as the initial samples were obtained from a uniform random distribution. As
shown in Figure 16, with 100 000 initial samples it was possible to obtain a ∼40% decrease in
error as compared to the baseline scheme, from 0.0025 to 0.0015 mean averaged error. Comparing
at the point of termination for QASS, this corresponds to a ∼6% decrease in the number of total
samples needed to train a surrogate with the same error.

18

10000 20000 30000 40000 50000 60000
Number of Samples

0.00

0.01

0.02

0.03

0.04

0.05

Er
ro

r v
al

ue

Varied Sampling Scheme for 10000 Initial, 100 Incremental Samples
MAE -- MCMC samples
E_MAE -- MCMC samples
MAE -- half MCMC, half uniform random samples
E_MAE -- half MCMC, half uniform random samples
MAE -- uniform random samples
E_MAE -- uniform random samples

Figure 15: Absolute training error for QASS,
baseline scheme, and mixed scheme.

100000 102500 105000 107500 110000 112500 115000 117500
Number of Samples

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Er
ro

r v
al

ue

Varied Sampling Scheme for 100000 Initial, 100 Incremental Samples
MAE -- MCMC samples
E_MAE -- MCMC samples
MAE -- uniform random samples
E_MAE -- uniform random samples

Figure 16: Absolute training error for QASS and
baseline scheme, with 100k initial samples.

5 Conclusion

Over the course of this project, we employed a broad spectrum of data analysis and machine
learning techniques to develop fast and high-quality surrogates for a MC TBR simulation in
use at UKAEA. Having implemented a sampling software to efficiently evaluate this expensive
MC model, we deployed it on a high performance cluster to generate over 900 000 datapoints
for training and test purposes. We investigated possibilities for simplification of the parameter
space, and concluded that no straightforward reduction was possible. After reviewing 9 surrog-
ate model families, examining their behaviour on constrained and unrestricted feature space,
and studying their scaling properties, we retrained the best-performing instances to produce
properties desirable for practical use. The fastest surrogate, an artificial neural network trained
on 500 000 datapoints, featured R2 = 0.985 with mean prediction time of 0.898 µs, representing
a relative speedup of 8 · 106 with respect to the MC model. Alternatively, we also demonstrated
the possibility of achieving comparable results using only a training set of size 10 000.

After a thorough review of the literature, we developed a novel adaptive sampling algorithm,
QASS, capable of interfacing with any of the studied surrogates. Preliminary testing on a toy
theory, qualitatively comparable to the MC TBR model, demonstrated the effectiveness of QASS
and behavioural trends consistent with the design of the algorithm. With 100 000 initial samples
and 100 incremental samples per iteration, QASS achieved a ∼40% decrease in surrogate error
as compared with a baseline random sampling scheme. Equivalently, the same surrogate error
as the baseline could be achieved with ∼6% fewer total samples of the expensive theory. Further
optimisation over the hyperparameter space has strong potential to increase this performance,
in particular by decreasing the required quantity of initial samples. This will allow for future
deployment of QASS in coalition with any of the most effective identified surrogates to facilitate
learning during evaluation of the MC TBR model.

Acknowledgements

The authors would like to thank Simeon Bash, Vignesh Gopakumar, Prof. Nikolaos Konstantin-
idis, Nikolaos Nikolaou, Prof. Emily Nurse, Jonathan Shimwell and Ingo Waldmann for their
supervision and valuable suggestions related to this work.

19

References

[1] Jacob Søndergaard. “Optimization Using Surrogate
Models”. PhD thesis. Technical University of Den-
mark, 2003.

[2] R.H. Myers and D.C. Montgomery. Response Sur-
face Methodology: Product and Process Optimization
Using Designed Experiments. 2nd. New York: John
Wiley & Sons, 2002.

[3] F.A. Hernández and P. Pereslavtsev. “First principles
review of options for tritium breeder and neutron mul-
tiplier materials for breeding blankets in fusion react-
ors”. In: Fusion Engineering and Design 137 (Dec.
2018), pp. 243–256. issn: 0920-3796.

[4] M Keilhacker. “JET deuterium: tritium results and
their implications”. In: Philosophical Transactions of
The Royal Society A: Mathematical, Physical and
Engineering Sciences 357 (Mar. 1999), pp. 415–442.

[5] M. Coleman and S. McIntosh. “BLUEPRINT: A
novel approach to fusion reactor design”. In: Fusion
Engineering and Design 139 (Feb. 2019), pp. 26–38.
issn: 0920-3796.

[6] Paul K. Romano et al. “OpenMC: A state-of-the-art
Monte Carlo code for research and development”. In:
Annals of Nuclear Energy 82 (2015). Joint Interna-
tional Conference on Supercomputing in Nuclear Ap-
plications and Monte Carlo 2013, SNA + MC 2013.
Pluri- and Trans-disciplinarity, Towards New Model-
ing and Numerical Simulation Paradigms, pp. 90–97.
issn: 0306-4549.

[7] Ian T Jolliffe and Jorge Cadima. “Principal com-
ponent analysis: a review and recent developments”.
In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences
374.2065 (Apr. 2016), p. 20150202.

[8] F. Pedregosa et al. “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[9] Mohamed Amine Bouhlel and Joaquim Martins.
“Gradient-enhanced kriging for high-dimensional
problems”. In: Engineering with Computers (Feb.
2018).

[10] Georges Matheron. “Principles of geostatistics”. In:
Economic Geology 58.8 (Dec. 1963), pp. 1246–1266.
issn: 0361-0128.

[11] Kriging Variogram Model. url: https://vsp.pnnl.
gov/help/Vsample/Kriging%7B%5C %7DVariogram%7B%
5C %7DModel.htm (visited on 20/04/2020).

[12] Jürgen Schmidhuber. “Deep learning in neural net-
works: An overview”. In: Neural Networks 61 (2015),
pp. 85–117. issn: 0893-6080.

[13] Rong-En Fan et al. “LIBLINEAR: A library for large
linear classification”. In: Journal of machine learning
research 9.Aug (2008), pp. 1871–1874.

[14] Jerome H Friedman. “Greedy function approxima-
tion: a gradient boosting machine”. In: Annals of stat-
istics (2001), pp. 1189–1232.

[15] JH Friedman. Stochastic Gradient Boosting Technical
Report. 1999.

[16] Trevor Hastie, Robert Tibshirani and Jerome Fried-
man. The elements of statistical learning: data min-
ing, inference, and prediction. Springer Science &
Business Media, 2009.

[17] Pierre Geurts, Damien Ernst and Louis Wehenkel.
“Extremely randomized trees”. In: Machine learning
63.1 (2006), pp. 3–42.

[18] Harris Drucker. “Improving regressors using boosting
techniques”. In: ICML. Vol. 97. 1997, pp. 107–115.

[19] Christopher KI Williams and Carl Edward
Rasmussen. Gaussian processes for machine learning.
Vol. 2. 3. MIT press Cambridge, MA, 2006.

[20] François Chollet et al. Keras. https://keras.io. 2015.

[21] Donald Shepard. “A two-dimensional interpolation
function for irregularly-spaced data”. In: Proceedings
of the 1968 23rd ACM national conference. 1968,
pp. 517–524.

[22] Mohamed Amine Bouhlel et al. “A Python surrogate
modeling framework with derivatives”. In: Advances
in Engineering Software (2019), p. 102662. issn: 0965-
9978.

[23] Jonas Močkus. “On Bayesian methods for seeking the
extremum”. In: Optimization techniques IFIP tech-
nical conference. Springer. 1975, pp. 400–404.

[24] Sushant Garud, Iftekhar Karimi and Markus Kraft.
“Smart Sampling Algorithm for Surrogate Model De-
velopment”. In: Computers & Chemical Engineering
96 (Oct. 2016).

[25] Jie Zhang, Souma Chowdhury and Achille Messac.
“An adaptive hybrid surrogate model”. In: Struc-
tural and Multidisciplinary Optimization 46.2 (2012),
pp. 223–238. issn: 1615-1488.

[26] Jun Zhou, Xiaosi Su and Geng Cui. “An adaptive Kri-
ging surrogate method for efficient joint estimation
of hydraulic and biochemical parameters in reactive
transport modeling”. In: Journal of Contaminant Hy-
drology 216 (Sept. 2018), pp. 50–57. issn: 0169-7722.

[27] Wei Gong and Qingyun Duan. “An adaptive surrog-
ate modeling-based sampling strategy for parameter
optimization and distribution estimation (ASMO-
PODE)”. In: Environmental Modelling & Software 95
(Sept. 2017), pp. 61–75. issn: 1364-8152.

[28] Jiangjiang Zhang et al. “Surrogate-Based Bayesian
Inverse Modeling of the Hydrological System: An Ad-
aptive Approach Considering Surrogate Approxima-
tion Error”. In: Water Resources Research 56.1 (Jan.
2020), e2019WR025721. issn: 0043-1397.

[29] Victor Ginting et al. “Application of the two-stage
Markov chain Monte Carlo method for characteriz-
ation of fractured reservoirs using a surrogate flow
model”. In: Computational Geosciences 15.4 (2011),
p. 691. issn: 1573-1499.

[30] Antti Solonen et al. “Efficient MCMC for Cli-
mate Model Parameter Estimation: Parallel Adaptive
Chains and Early Rejection”. en. In: Bayesian Anal.
7.3 (2012), pp. 715–736. issn: 1936-0975.

20

https://vsp.pnnl.gov/help/Vsample/Kriging%7B%5C_%7DVariogram%7B%5C_%7DModel.htm
https://vsp.pnnl.gov/help/Vsample/Kriging%7B%5C_%7DVariogram%7B%5C_%7DModel.htm
https://vsp.pnnl.gov/help/Vsample/Kriging%7B%5C_%7DVariogram%7B%5C_%7DModel.htm
https://keras.io

[31] Jerome Sacks, Susannah B Schiller and William J
Welch. “Designs for computer experiments”. In: Tech-
nometrics 31.1 (1989), pp. 41–47.

[32] Herman Wold. “Soft modelling by latent vari-
ables: the non-linear iterative partial least squares
(NIPALS) approach”. In: Journal of Applied Prob-
ability 12.S1 (1975), pp. 117–142.

[33] Mohamed Amine Bouhlel et al. “Improving kriging
surrogates of high-dimensional design models by Par-

tial Least Squares dimension reduction”. In: Struc-
tural and Multidisciplinary Optimization 53.5 (2016),
pp. 935–952.

[34] Mohamed Amine Bouhlel et al. “An improved ap-
proach for estimating the hyperparameters of the kri-
ging model for high-dimensional problems through
the partial least squares method”. In: Mathematical
Problems in Engineering 2016 (2016).

Appendix A Online Materials Overview

In this appendix, we provide a brief overview of datasets, software, documentation and other
resources available online for public use. All files related to this project are hosted by GitHub in
a group at https://github.com/ucl-tbr-group-project, organised as follows:

Simple Sphere Study OpenMC TBR simulation software used to generate TBR values.

Sampling Python implementation of the Approximate TBR Evaluator.

Data Over 900 000 datapoints and TBR values generated in sampling runs 0-2.

Regression Python implementation of the surrogate models presented in this work as well as
various preprocessing, plotting and evaluation tools.

Hyperparameter Optimisation Results, plots and software commands used to produce them.

Documentation Notes, extended bibliography, this LATEX document and source files.

Unless specified otherwise, these materials are shared in accordance with the MIT Licence.

Appendix B Detailed Results

Regression performance Complexity

Family # MAE [TBR] S [TBR] R2 [rel.] R2
adj. [rel.] ttrn. [ms] tpred. [ms]

SVM 1040 0.078± 0.012 0.096± 0.013 0.865± 0.031 0.862± 0.031 0.247± 0.014 0.035± 0.006
GBT 1000 0.062± 0.010 0.062± 0.008 0.934± 0.007 0.933± 0.007 3.253± 0.618 0.004± 0.000
ERT 1000 0.076± 0.007 0.077± 0.004 0.898± 0.005 0.896± 0.005 3.257± 1.698 0.125± 0.041
ABT 1000 0.146± 0.016 0.097± 0.007 0.732± 0.026 0.726± 0.027 0.182± 0.015 0.014± 0.001
GPR 1000 0.150± 0.020 0.137± 0.015 0.642± 0.041 0.635± 0.042 0.241± 0.001 0.075± 0.001
KNN 1000 0.143± 0.020 0.136± 0.019 0.661± 0.045 0.654± 0.046 0.002± 0.000 0.744± 0.030
ANN 461 0.072± 0.008 0.082± 0.008 0.895± 0.020 0.893± 0.021 26.211± 8.408 0.294± 0.027
IDW 1000 0.151± 0.020 0.140± 0.020 0.631± 0.047 0.623± 0.048 0.001± 0.000 0.290± 0.028
RBF 1000 0.078± 0.012 0.086± 0.012 0.881± 0.028 0.878± 0.029 0.193± 0.003 0.089± 0.001

Table 7: Results of experiment 1 (single slice hyperparameter tuning) as means and standard deviations
over 4 tested slices. Column # gives the number of Bayesian optimisation iterations. While regression
performance is reported for the best instance (in R2) per surrogate family, complexity is measured over
all tested instances.

21

https://github.com/ucl-tbr-group-project
https://github.com/ucl-tbr-group-project/simple-sphere-study
https://github.com/ucl-tbr-group-project/sampling
https://github.com/ucl-tbr-group-project/data
https://github.com/ucl-tbr-group-project/regression
https://github.com/ucl-tbr-group-project/hyperopt
https://github.com/ucl-tbr-group-project/documentation

Regression performance Complexity

Family # MAE [TBR] S [TBR] R2 [rel.] R2
adj. [rel.] ttrn. [ms] tpred. [ms]

SVM 1000 0.091 0.113 0.820 0.818 0.522± 0.235 0.201± 0.042
GBT 581 0.070 0.072 0.914 0.913 14.431± 42.075 0.006± 0.003
ERT 901 0.086 0.087 0.871 0.870 3.729± 12.784 0.169± 0.050
ABT 1000 0.179 0.121 0.602 0.596 0.208± 0.075 0.014± 0.005
GPR 1000 0.268 0.186 0.091 0.078 0.985± 0.014 0.278± 0.008
KNN 1000 0.182 0.153 0.519 0.512 0.003± 0.000 4.525± 4.181
ANN 760 0.061 0.071 0.924 0.923 4.453± 3.510 0.014± 0.004
IDW 1000 0.194 0.162 0.454 0.446 0.001± 0.000 0.768± 0.015
RBF 1000 0.083 0.089 0.873 0.871 1.011± 0.265 0.503± 0.143

Table 8: Results of experiment 2 (full feature space hyperparameter tuning), shown analogously to Table 7.

Regression performance as R2 [rel.] by cross-validation set size

Family 1000 2000 5000 10 000 12 000 15 000 20 000

SVM 0.328± 0.086 0.452± 0.069 0.591± 0.050 0.656± 0.040 0.667± 0.038 0.680± 0.036 0.701± 0.032
GBT 0.827 ± 0.006 0.867 ± 0.003 0.897 ± 0.002 0.910 ± 0.002 0.912 ± 0.002 0.918 ± 0.002 0.922± 0.002
ERT 0.737± 0.000 0.778± 0.000 0.839± 0.000 0.869± 0.000 0.876± 0.000 0.884± 0.000 0.896± 0.000
ABT 0.613± 0.005 0.608± 0.006 0.645± 0.007 0.581± 0.006 0.582± 0.008 0.579± 0.004 0.576± 0.007
GPR 0.006± 0.000 0.010± 0.000 0.046± 0.000 0.087± 0.000 0.106± 0.000 0.129± 0.000 0.162± 0.000
KNN 0.383± 0.001 0.410± 0.000 0.469± 0.000 0.512± 0.001 0.520± 0.001 0.528± 0.001 0.538± 0.001
ANN 0.497± 0.058 0.667± 0.026 0.848± 0.022 0.914 ± 0.008 0.920 ± 0.008 0.927 ± 0.009 0.933 ± 0.011
IDW 0.287± 0.001 0.327± 0.001 0.409± 0.000 0.435± 0.000 0.459± 0.000 0.471± 0.000 0.490± 0.000
RBF 0.729± 0.006 0.773± 0.004 0.815± 0.005 0.844± 0.007 0.851± 0.006 0.856± 0.006 0.865± 0.006

Table 9: Results of experiment 3 (scaling benchmark) in terms of R2. The best-performing family (or
families) for each set size is highlighted in bold.

Complexity as ttrn. [ms] by cross-validation set size

Family 1000 2000 5000 10 000 12 000 15 000 20 000

SVM 0.121± 0.061 0.224± 0.149 0.495± 0.356 0.941± 0.495 1.123± 0.513 1.448± 0.570 1.963± 0.563
GBT 3.049± 0.543 2.820± 0.422 2.784± 0.339 2.894± 0.357 2.984± 0.345 3.071± 0.319 3.189± 0.417
ERT 4.437± 0.447 4.239± 0.404 3.972± 0.310 4.288± 0.293 4.322± 0.245 4.365± 0.249 4.485± 0.271
ABT 0.621± 0.083 0.477± 0.040 0.374± 0.047 0.331± 0.034 0.324± 0.038 0.339± 0.034 0.336± 0.036
GPR 0.176± 0.014 0.324± 0.026 0.952± 0.051 2.630± 0.115 3.482± 0.105 4.807± 0.116 7.986± 0.163
KNN 0.006± 0.001 0.005± 0.001 0.005± 0.001 0.006± 0.001 0.007± 0.001 0.007± 0.001 0.008± 0.001
ANN 31.111± 1.624 23.480± 1.054 12.708± 2.332 8.665± 0.620 9.344± 0.757 8.259± 0.499 7.916± 0.472
IDW 0.005 ± 0.001 0.003 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.003 ± 0.000 0.003 ± 0.000
RBF 0.162± 0.009 0.290± 0.024 0.860± 0.071 2.347± 0.116 3.132± 0.135 4.491± 0.157 7.334± 0.260

Table 10: Results of experiment 3 (scaling benchmark) in terms of ttrn., displayed analogously to Table 9.

Complexity as tpred. [ms] by cross-validation set size

Family 1000 2000 5000 10 000 12 000 15 000 20 000

SVM 0.042± 0.010 0.078± 0.014 0.162± 0.029 0.304± 0.042 0.354± 0.049 0.457± 0.061 0.586± 0.086
GBT 0.017 ± 0.003 0.016 ± 0.003 0.013 ± 0.001 0.011 ± 0.001 0.011 ± 0.001 0.011 ± 0.001 0.011 ± 0.001
ERT 0.369± 0.057 0.322± 0.049 0.290± 0.041 0.315± 0.038 0.308± 0.063 0.325± 0.056 0.347± 0.050
ABT 0.065± 0.014 0.042± 0.005 0.028± 0.005 0.025± 0.003 0.024± 0.003 0.023± 0.002 0.022± 0.002
GPR 0.054± 0.008 0.114± 0.012 0.295± 0.020 0.584± 0.064 0.694± 0.062 0.852± 0.073 1.170± 0.160
KNN 0.226± 0.454 0.411± 0.819 1.027± 1.901 2.216± 3.575 2.764± 4.271 3.424± 5.205 5.340± 6.862
ANN 0.171± 0.018 0.133± 0.066 0.066± 0.041 0.037± 0.026 0.038± 0.027 0.028± 0.016 0.025± 0.017
IDW 0.191± 0.023 0.338± 0.036 0.730± 0.062 1.432± 0.096 1.580± 0.130 2.118± 0.155 2.854± 0.194
RBF 0.079± 0.012 0.187± 0.021 0.461± 0.049 0.926± 0.097 1.097± 0.121 1.427± 0.154 1.884± 0.207

Table 11: Results of experiment 3 (scaling benchmark) in terms of tpred., displayed analogously to Table 9.

22

	Introduction
	Problem Description

	Data Exploration
	Expensive Model Description
	Dataset Generation
	Dimensionality Reduction
	Principal Component Analysis
	Variogram Computations
	Autoencoders

	Methodology
	Metrics
	Decoupled Sampling
	Experiments

	Adaptive Sampling

	Results
	Results of Decoupled Sampling
	Hyperparameter Tuning
	Scaling Benchmark
	Model Comparison

	Results of Adaptive Sampling

	Conclusion
	Appendices
	Online Materials Overview
	Detailed Results

