

Interactive Visualization & Online Analysis of Timepix Data

J. Begera¹, B. Bergmann¹, T. Billoud², P. Burian^{1,3}, I. Caicedo¹, D. Caforio¹,
E. Heijne¹, J. Janecek¹, C. Leroy², A. Leszczynska¹, P. Manek¹, Y. Mora¹,
M. Platkevic¹, J. Pacik¹, S. Polansky¹, S. Pospisil¹, M. Suk¹, Z. Svoboda¹

¹ Institute of Experimental and Applied Physics, Czech Technical University in Prague

² Groupe de la Physique des Particules, Universite de Montreal

³ University of West Bohemia, Pilsen

petr.manek@utef.cvut.cz

Outline

•

- ATLAS-TPX Detector Network
- Data Transfer Schema
 - Analysis & Control Chain
 - Analysis Process
 - Visualization Chain
 - Interactive Visualization Software
 - Live Demonstration

ATLAS-TPX Detector Network

- Successor of the ATLAS-MPX project.
- 16 detectors installed within the ATLAS Machine.
- A single detector is comprised of:

University in Prague

echnical

Czech T

Physics

Applied

and

Institute of Experimental

- 2 silicon Timepix chips (300µm, 500µm thick) facing each other
- 4 neutron converter regions (LiF, PE, PE+AI, free region)
- ATLASPIX readout (FPGA, Raspberry Pi)

LIF+AI

Free

PE+AI

PE

Data Transfer Schema

Analysis & Control Chain

Czech Technical University in Prague

Institute of Experimental and Applied Physics

- Analysis VMs utilize 24 CPUs and 48 GBs of RAM.
- Raw data is deleted from EOS upon transfer to the backup server.

Analysis Process

- Synchronous: runs at Control PC after the data comes from ATLASPIX.
 - Only the simplest and most important indicators are calculated.
 - Potential to estimate instantaneous luminosity.
 - Measurements will be reported to DCS for FSM live view.
- Asynchronous: runs concurrently in bulk transactions over a time period.
 - 1. Consistency Validation: skipped if there are no hardware faults
 - 2. Coordinate Transformation: slice and rotate pixel matrices
 - 3. Separation: 8-way flood-fill algorithm
 - 4. Calculations: energy calibration, volume, height, average, centroids
 - 5. Morphological Classification:
 - Dot | Small Blob | Curly Track | Heavy Blob | Heavy Track | Straight Track

Visualization Chain

- Separate environment (completely independent of ACC)
- Data is manipulated in transactions.
 - Current common transaction time span: 1 day
 - System designed to support minimum transaction time span: 1 minute
 - Possibility of real-time (or near-real-time) frame display.
- Operates on ROOT data store of approx. size 12 TBs
 - Original random access time: 12 s (now: ~350 ms)
 - Various indexing techniques to speed up (implemented as <u>bachelor thesis</u>)
- Data store accessible for reading to all ATLAS users:
 - root://eosatlas/eos/atlas/atlascerngroupdisk/tpx

Visualization Software Demo

Interactive Visualization Software

- UI inspired by Pixelman.
- HTML5 application: <u>https://tpx-visualizer.cern.ch</u> (access upon request)
- Main objective: preliminary monitoring & analysis
 - Display frames by detector and time (summer 2015 present).
 - Plot flux (number of clusters over a unit of time) and occupancy by detector.

• Features:

- Zooming, linear / logarithmic axis, various colormaps.
- Calculate statistics based on track types, estimate energy deposition and approximate instantaneous luminosity from the cluster count.
- Display (and compare) data from multiple detectors at the same time.
- Mask noisy pixels, filter pixels and clusters based on a custom predicate.
- Integrate pixel matrices over consecutive frames.
- Export data in ASCII (CSV) for plotting and further processing.
- Experimental support for MoEDAL-TPX and ATLAS-TPX GaAs detectors.

Interactive Visualization Software

Thank you for your attention!

J. Begera¹, B. Bergmann¹, T. Billoud², P. Burian^{1,3}, I. Caicedo¹, D. Caforio¹,
E. Heijne¹, J. Janecek¹, C. Leroy², A. Leszczynska¹, P. Manek¹, Y. Mora¹,
M. Platkevic¹, J. Pacik¹, S. Polansky¹, S. Pospisil¹, M. Suk¹, Z. Svoboda¹

¹ Institute of Experimental and Applied Physics, Czech Technical University in Prague

² Groupe de la Physique des Particules, Universite de Montreal

³ University of West Bohemia, Pilsen

petr.manek@utef.cvut.cz

Preliminary results: Thermal neutron fluxes measured by different devices

Thermal neutron signal is a reliable indicator for collision periods