

FACULTY OF MATHEMATICS AND PHYSICS Charles University

A system for 3D localization of gamma sources using Timepix3-based Compton cameras

Petr Mánek petr.manek@utef.cvut.cz

Supervisor: Filip Zavoral zavoral@ksi.mff.cuni.cz

γ-camera

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Ref.: 1959, Anger et al. 1974, Todd et al. 1977, Everett et al.

• Sensor: semiconductor layer < 1 mm (Si, GaAs, CdTe)

- 256 x 256 pixels with 55 µm pitch (~1.41 cm in total)
- Detector <u>runs continuously</u> a reports active pixels during measurement.
- Each pixel records:

Timepix3

- a) timestamp (± 1.25 ns),
- b) deposited energy.

- → Erratic data flux spikes,
- → High volumes (units of GB/s)

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Thesis Structure

Control program components:

Timepix3

Timepix3

Timepix3

- 2
- •

Thesis Structure

FACULTY OF MATHEMATICS AND PHYSICS Charles University

1. Communication with Detector,

Control program components:

Hardware Library	
	_
Hardware Library	
Hardware Library	
	Hardware Library

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Thesis Structure

- 1. Communication with Detector,
- 2. Analysis of Measured Data,

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Thesis Structure

- 1. Communication with Detector,
- 2. Analysis of Measured Data,
- 3. 3D Image Reconstruction,

Thesis Structure

- Communication with Detector,
 Analysis of Measured Data,
- 3. 3D Image Reconstruction,

CTU IN PRAGUE

FACULTY OF MATHEMATICS AND PHYSICS Charles University

4. Experiments.

+

(1) Communication

UNIVERSITY

- Control Program ↔ HW library ↔ Timepix3
- Implemented HW library for the Katherine readout (developed in Pilsen by UWB)
- Library supports:
 - a) Detector configuration,
 - b) Status monitoring and acquisition control,
 - c) Fast asynchronous data processing (theoretically up to 15M px/s).

(2a) Data Analysis

FACULTY OF MATHEMATICS AND PHYSICS Charles University

- Goal: observe <u>electron</u> ionized by a <u>photon</u>
- In the detector: electron ~ pixel cluster
- Issue #1: Detector only reports pixels.
 - Morphological aggregation (group adjacent pixels)
- **Issue #2:** Pixels may be reported out of order.
 - → Buffer incoming pixels before aggregating them.
- Solution: Novel clustering algorithm
 - Pixels are sorted by timestamps in a priority queue,
 - Adjacent pixels are then identified using geometric DS.

Timepix3

(2b) Data Analysis

- **Issue #3:** A single photon can ionize multiple electrons.
 - ➔ Group time-coincident clusters from different detectors.

- **Solution:** Time synchronization + novel matching algorithm
 - Pixel aggregation runs simultaneously for all detectors,
 - Clusters are then matched based on theirtimestamps.
- Both new algorithms:
 - Scale well asymptotically (Katherine can measure up to 15M px/s),
 - Can run online \rightarrow they can be composed into data pipeline,
 - Support cascade filtering \rightarrow decrease complexity and memory usage.

- Goal: localize the source
- We are looking for photons which ionized some electrons in both detectors.
- Deposited energies give the Source angle β of a conic surface.

FACULTY

AND PHYSICS

Charles University

HEMATICS

(1)

(1) Compton Scattering

- γ-photon loses <u>some</u> of its energy
- Changes its velocity by the angle β

$$\cos\beta = 1 - m_e c^2 \left(\frac{1}{E_{\gamma}'} - \frac{1}{E_{\gamma}}\right)$$

(2) Photoelectric Absorption

- γ-photon loses <u>all</u> its energy
- Photon is absorbed and ceases to exist

FACULTY OF MATHEMATICS AND PHYSICS Charles University

(2)

(3b) Reconstruction

- Goal: localize the source
- We are looking for photons which ionized some electrons in both detectors.
- Deposited energies give the Source angle β of a conic surface.
- The source lies *somewhere* on the cone mantle (3)
 - ➔ We need multiple cones,
 - N is corresponds to the desired accuracy

(1) Compton Scattering

(1)

(3)

- γ-photon loses <u>some</u> of its energy
- Changes its velocity by the angle $\boldsymbol{\beta}$

$$\cos\beta = 1 - m_e c^2 \left(\frac{1}{E_{\gamma}'} - \frac{1}{E_{\gamma}}\right)$$

(2) Photoelectric Absorption

- γ-photon loses <u>all</u> its energy
- Photon is absorbed and ceases to exist

FACULTY OF MATHEMATICS AND PHYSICS Charles University

- Implemented the forward projection algorithm.
 - ➔ Projects cones into a discretized box volume.
- Speed can be increased using parallel planes.
 - Derived faster backward projection algorithm.

V1

- → 1 cone projection: 1 forward + N backward
- Total cell count increases fast with N.
- N = $300 \rightarrow 27M$ cells (~100 MB)
- Further performance improvements:
 - → Parallel implementation,
 - → Look-up tables,
 - ➔ Interpolation,
 - ➔ Graphics Cards (CUDA).
- **Ref.:** 1984, Dudgeon et al. 2009, Herman

N = 5 cones

N = 10 cones

N = 20 cones

N = 50 cones

(4a) Experiments

• Interpolation error evaluation,

(4b) Experiments

- Interpolation error evaluation,
- Reconstruction of a simulated point source,

(4c) Experiments

- Interpolation error evaluation,
- Reconstruction of a simulated point source,
- Reconstruction of a simulated point source with multiple viewpoints,

(4d) Experiments

- Interpolation error evaluation,
- Reconstruction of a simulated point source,
- Reconstruction of a simulated point source with multiple viewpoints,
- Reconstruction of a simulated phantom with multiple capilaries,

(4e) Experiments

FACULTY OF MATHEMATICS AND PHYSICS Charles University

850

- Interpolation error evaluation,
- Reconstruction of a simulated point source,
- Reconstruction of a simulated point source with multiple viewpoints,
- Reconstruction of a simulated phantom with multiple capilaries,
- Reconstruction of a Am and Tc source.

Conclusion

- Proposed novel γ-camera, capable of outperforming state-of-art solutions.
- In the thesis,
 - → New Timepix3 readout SW was created (can be used in other apps.),
 - Fast reduction and aggregation algorithms were implemented,
 - → 3D image reconstruction algorithms were derived and evaluated,
 - ➤ Multitude of experiments were conducted to verify corectness.
- Autumn 2018:
 - → Constructed prototypes using Si-Si, Si-GaAs detectors,
 - → All SW converted to parallel implementation (CPU i GPU),
 - ➔ Performed basic measurements in Prague and Freiburg.

Camera doesn't require mechanical collimation \rightarrow smaller, lighter, more efficient, High energy resolution of Timepix3 \rightarrow lower angular error.

Applications

- Source: radioactive contrast material
- Exposure duration ~ damage to patient.

(2) Decontamination

- Source: radioactive material to eliminate
- Lower desired precision (direction is sufficient).

(3) Homeland Security (airports, military, etc.)

- Source: nuclear weapons, fuel, contraband
- Classification task: is the source present?

(4) Quality Control of Nuclear Fuel

Further Work

- Construct Si-CdTe prototype, use more layers, arc configuration
 - ➔ Increase measurement efficiency
- The LM-MLEM algorithm
 - → Decrease time complexity, increase contrast (CNR)
- Benchmark using certified SPECT system
 - → Objective comparison, study of response and resolution
 - Reconstruction of basic phantoms and small mammals
- Visible image overlay, miniaturization
 - Handheld measurement probe
- ROS integration for drones
 - Communication and power management
 - → Autonomous mapping setup (using e.g. SLAM)

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Thank you for your attention!

Petr Mánek petr.manek@utef.cvut.cz

Supervisor: Filip Zavoral zavoral@ksi.mff.cuni.cz

I would like to thank: Martin Pichotka, Benedikt Bergmann, Moritz Weigt, Petr Burian, Martin Kruliš, Jakub Yaghob

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Backup

FACULTY OF MATHEMATICS AND PHYSICS Charles University

$\cos\beta = 1 - m_e c^2 \left(\frac{1}{E_{\gamma}'} - \frac{1}{E_{\gamma}}\right)$

