Study of noisy pixel appearance and thermal neutron fluxes with Timepix3 in ATLAS

**C. Lesmes**, B. Bergmann, T. Billoud, P. Broulim, P. Burian, C. Leroy, P. Manek, L. Meduna, S. Pospisil, A. Sopczak, M. Suk

Institute of Experimental and Applied Physics Czech Technical University in Prague

July 8, 2019





#### Outline

- 1. Introduction
- 1.1 ATLAS Timepix3 devices
- 1.2 Motivation
- 2. Noisy pixel removal
- 2.1 Method
- 2.2 Results
- 2.3 Improvement
- 3. Thermal Neutrons
- 4. From clusters to luminosity
- 5. Luminosity curve
- 5.1 Model
- 5.2 Fitted luminosity curve

#### 6. Conclusions

08/06/2019



### Introduction

#### Introduction - ATLAS Timepix3 devices



ATLAS MPX and TPX networks were used to:

- Measure radiation field at different positions in ATLAS and use the results for ATLAS simulation validation.
- Measure the activation of material during and after collisions.
- Measure ATLAS luminosity.

In this presentation we use the newly installed (before end of Run-2) Timepix3 devices in ATLAS to study their capability for improved luminosity determination.

08/06/2019



#### Introduction - ATLAS Timepix3 devices



#### ATLAS Timepix3 features:

- Stack of two independent silicon detectors (I4 and J4).
- Time binning of 1.56 ns.
- > 256 x 256 independent pixels.
- Simultaneous measurement of time and energy.
- Continuous readout.
- Synchronization with LHC clock.



Figure: Timepix3 devices

08/06/2019

### Introduction - ATLAS Timepix3 devices



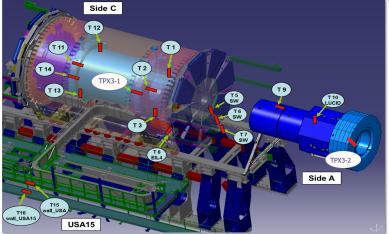



Figure: Location of TPX and Timepix3 devices in ATLAS

► TPX3-1 used for analysis located 4.6 m away from interaction point. 08/06/2019 iWoRiD 2019 - Catalina Lesmes Ramirez 6/28

### Introduction - ATLAS Motivation



Problem 1: Appearance of random noisy pixels creating count rates not following a standard luminosity curve.

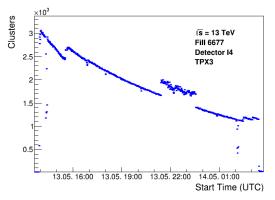



Figure: Time history of Timepix3 cluster count for LHC fill 6677

• Conduct a noisy pixel analysis to find them and remove them.

08/06/2019

### Introduction - ATLAS Motivation

Problem 2: Activation of surrounding material can create a background signal which adds a systematic uncertainty to the luminosity measurement.

10<sup>4</sup> 10<sup>4</sup> 10<sup>2</sup> 27,22h 28,04h Time in April

Figure: Cluster count contribution to the signal

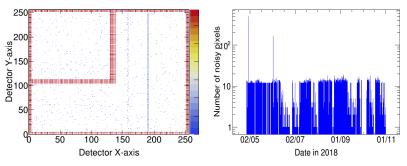
Mitigate the problem by using only the thermal neutron count rate.

08/06/2019



# Noisy pixel removal




For the implementation of the noisy pixel removal we must understand the following:

- A pixel is considered noisy if its count rate is 5 standard deviations away from the mean count rate of all pixels.
- The borders of the detector are more prone to noise so they are removed from the analysis.
- Detector I4 had a LiF cover for thermal neutron identification. To account for the different statistics below the converter, the removal was done separately for this region.
- The configuration matrix of the detector resets every 3 hours so the noisy pixel removal must be done every time it resets.

08/06/2019

#### Noisy pixel removal - Results





### (a) Noisy pixels removed as seen in the detector

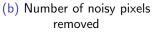
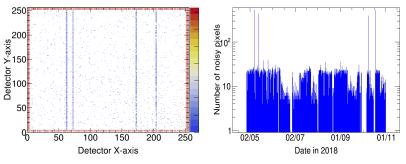



Figure: Noisy pixels removed from April to October for detector I4

- Less than 15 noisy pixels are removed every 3 hours.
- Two columns have common registry.


08/06/2019

WoRiD 2019 - Catalina Lesmes Ramirez

11/28

#### Noisy pixel removal - Results





### (a) Noisy pixels removed as seen in the detector

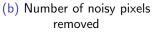
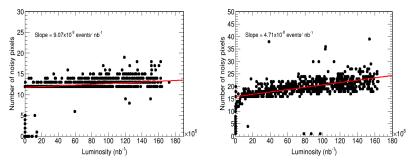



Figure: Noisy pixels removed from April to October for detector J4


- Less than 20 noisy pixels are removed every 3 hours.
- Two columns have common registry.

08/06/2019



#### Noisy pixel removal - Results





(a) Noisy pixels detector I4

(b) Noisy pixels detector J4

Figure: Relation between noisy pixels and integrated luminosity per 3 hours

No strong correlation with luminosity.

08/06/2019



#### Noisy pixel removal - Improvement



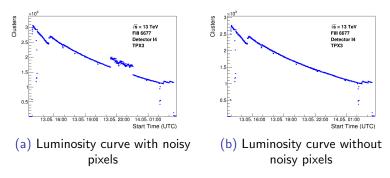



Figure: Time history of Timepix3 cluster count for LHC fill 6677

08/06/2019



### Thermal neutrons

Thermal neutrons





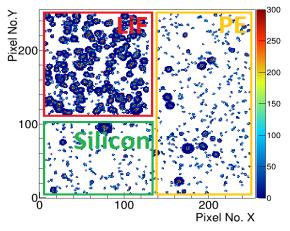



Figure: LiF converter effect and detector I4 region separation

► Thermal neutron fluxes were determined through the  ${}^{6}\text{Li}(n,\alpha)^{3}\text{H-reaction}.$ 

08/06/2019

iWoRiD 2019 - Catalina Lesmes Ramirez

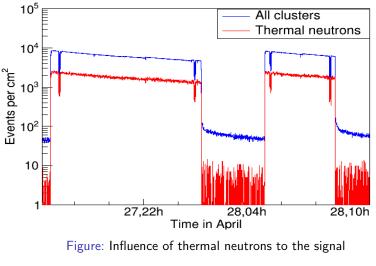
16/28

#### Thermal Neutrons



The thermal neutrons fluxes in the detector can be determined using the following equation:

$$\phi_i = \frac{\frac{N_{LiF}}{A_{LiF}} - \frac{N_{Si}}{A_{Si}}}{\varepsilon} \tag{1}$$


- $\phi_i \rightarrow$  Thermal neutrons fluxes per LHC fill
- ▶  $N_{LiF}$  → Number of heavy blobs found in the LiF region
- ▶  $N_{Si}$  → Number of heavy blobs found in the silicon region
- $A_{LiF} \rightarrow \text{LiF}$  region (upper left side of the detector)
- $A_{Si} \rightarrow$  Silicon region (lower left side of the detector)
- $\varepsilon \rightarrow$  detector efficiency (1%)

08/06/2019



#### Thermal neutrons





Activation is not seen in the thermal neutron signal.

08/06/2019

WoRiD 2019 - Catalina Lesmes Ramirez

18/28

# From clusters to luminosity

#### From clusters to luminosity



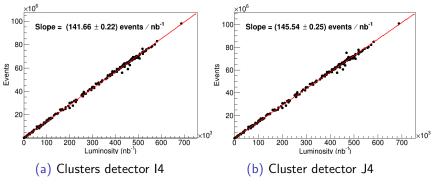



Figure: Relation between clusters and luminosity per fill

Remarks:

- Due to failures of the control PC data of some fills were not complete (these were removed from the analysis).
- Special physics fills are not considered.



#### From clusters to luminosity



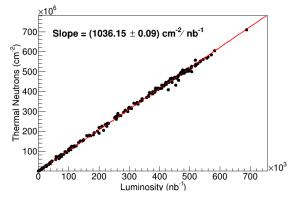



Figure: Relation between thermal neutrons and integrated luminosity per fill

Remarks:

- Due to failures of the control PC data of some fills were not complete (these were removed from the analysis).
- Special physics fills are not considered.

08/06/2019

# Luminosity curve

#### Luminosity curve - Model



The bunch population N evolution is described by

$$-\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda_{bb}\frac{N^2}{N_0} + \lambda_g N$$

with  $N_0$  = Initial Population  $\lambda_{bb}$  = Loss rate due to beam – beam interactions  $\lambda_g$  = Loss rate due to beam – gas interactions

$$\Rightarrow \quad N(t) = \frac{N_0 e^{-\lambda_g t}}{1 + \frac{\lambda_{bb}}{\lambda_g} (1 - e^{-\lambda_g t})}$$

08/06/2019



#### Luminosity curve - Fitted luminosity curve



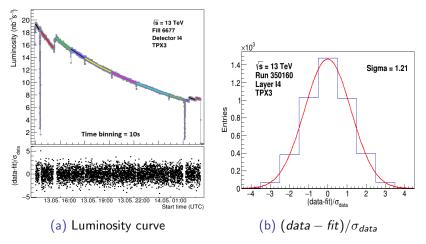



Figure: Fitted luminosity curve - All clusters

The sigma value higher than 1 is due to systematic effects (activation).

08/06/2019

iWoRiD 2019 - Catalina Lesmes Ramirez

24/28

#### Luminosity curve - Fitted luminosity curve



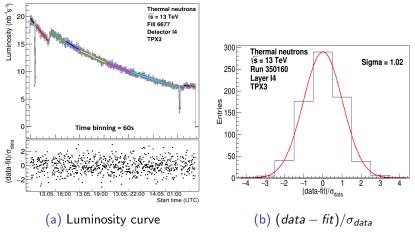



Figure: Fitted luminosity curve - Thermal neutrons

08/06/2019



### Conclusions

#### Conclusions



- ► The noisy pixel removal has been implemented and on average less than 0.1% of the pixels are removed.
- Thermal neutrons show less background signal than the other types of clusters.
- Clusters are strongly correlated to luminosity which allows us to find a normalization factor between them.
- Using thermal neutrons for the luminosity curve lowers the systematic uncertainties from the clusters count rate.

08/06/2019

# Thank you for your attention!

Catalina Lesmes Ramírez clesmes@eafit.edu.co