

Applications of Machine Learning and Computer Vision in Analysis of Timepix3 Data

Petr Mánek^{1,2}, petr.manek@utef.cvut.cz

¹Institute of Experimental and Applied Physics, Czech Technical University, Prague ²Department of Physics and Astronomy, University College London

On the menu today

Several *selected* nice examples ... by no means exhaustive!

Topics:

- Trajectory estimation & reconstruction (CV),
- Particle identification (ML),

If interested, watch for references in the bottom of slides.

Trajectory estimation

- Why?
 - To determine where ionizing particles come from.
 - To separate particles in complex interactions.
- How?
 - Particles with sufficient energy produce linear tracks.
 - Assuming 1 particle per track, we fit a line with least squares.
 - Are we done? 🙂
 - No, because of ... random noise, overlaps, δ -rays, etc.
 - Solution: robust fitting!

Robust trajectory estimation

- 1. Sample lines from the data at random.
 - 2. For each line, count hits closer than a threshold.
- 3. Remember the line with the most hits.
- Advantages:
 - Fast, easy to implement & generalize,
 - Estimates P(incorrect sampling),
 - Copes with $\leq 50\%$ outliers.
- Improvement: weighting by energy.

Example: RANSAC in 3D

Considered model Best model so far Outliers 0 Inliers E (keV) 2000 -80 1750 -60 1500 1250. 9 600 V -40 1000 750F20 25005002000 250LO 1500I tel (HITI) 1000 $\begin{smallmatrix} 1600 & 1400 & 1200 & 1000 & 800 & 600 & 400 & 200 & 0 \\ 1600 & 1400 & 1200 & 1000 & 800 & 600 & 400 & 200 & 0 \\ \end{smallmatrix}$ 500 0 yrei (µm)

Inliers: 5 (current), 5 (best so far)

Bergmann et al.: *3D reconstruction of particle tracks in a 2 mm thick CdTe hybrid pixel detector*, EPJC 79/2, pp. 165

Mánek et al.: *Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3 Detectors*, arXiv:1911.02367

Hough accumulator (1 of 204 hits processed)

Hough accumulator (1 of 204 hits processed)

Hough accumulator (1 of 204 hits processed)

Example: Hough in 3D

Mánek et al.: *Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3 Detectors*, arXiv:1911.02367

Example: MoEDAL directions

Particle identification – why?

- Why?
 - To characterize unknown radiation fields.
 - To recognize (& compare) sources with known decay products.
- How? *Machine learning!*
 - We pre-process tracks into feature vectors (e.g. E, shape, complexity).
 - Or just train a neural net from a 2-channel image!

Ion classification

 Ions of different elements deposit energy at various rates (dE/dx). Pixel Number Y [px

50

30

20

δ-rays

- Procedure:
 - 1. Find & separate ion core.
 - 2. Sample energy along its path.

Core

Energy [keV

10²

10

Ion classification

- Ions of different elements deposit energy at various rates (dE/dx).
- Procedure:
 - 1. Find & separate ion core.
 - 2. Sample energy along its path.
- Learning:
 - Annotated ~1K tracks of 5 species.
 - Trained k-NN classifier (k = 7).
 - 89.3% accuracy.

Mánek: Machine learning approach to ionizing particle recognition using hybrid active pixel detectors, FEE CTU Master's thesis, 2018

Ion classification (with rejection)

- Ions of different elements deposit energy at various rates (dE/dx).
- Procedure:
 - 1. Find & separate ion core.
 - 2. Sample energy along its path.
- Learning:
 - Annotated ~1K tracks of 5 species.
 - Trained k-NN classifier (k = 7).
 - New: reject if confidence < 90%.
 - 93.5% accuracy, ~25% rejected.

Mánek: Machine learning approach to ionizing particle recognition using hybrid active pixel detectors, FEE CTU Master's thesis, 2018

Ion momentum classification

• Tracks at different energy levels have characteristic shapes (e.g. halo).

- Procedure:
 - 1. Normalize tracks (in E, direction).
 - 2. Train a multi-layer perceptron (1×128) on pixel image (2×32×32).
- 87.7% accuracy.

0.0

1.0

-0.8

-0.6

-0.4

-0.2

Conclusion

- Timepix3 energy and time-of-arrival response encodes incident particle information in complex manner.
- Classifier models can be successfully trained for inference of particle properties.
- Robust computer vision methods are viable and tractable means of pre-processing Timepix3 data in 2D and 3D.
- Many avenues still remain to be explored!

Thank you for listening!

Petr Mánek, petr.manek@utef.cvut.cz

Find these slides online: https://bit.ly/pm_workshop_2020

