

Timepix3 Single-layer Compton Camera: Progress Update (November 2020)

Petr Mánek^{1,2}, petr.manek@utef.cvut.cz

¹Institute of Experimental and Applied Physics, Czech Technical University, Prague ²Department of Physics and Astronomy, University College London

On the menu today

- Reminder of the working principle.
- Results of recent data analysis:
 - ¹⁹²Ir a Allpix² simulation,
 - ¹⁹²Ir measurement, July 2020,
 - ⁵⁷Co measurement, October 2020.
- A small experiment involving various uncertainties.

Working principle

- We want to localize a γ -ray source in 3D.
- Procedure:
 - 1. Look for coincident cluster pairs (< 4px).
 - 2. Estimate scattering angle β from E via:

$$\cos\beta = 1 - m_e c^2 \left(\frac{1}{E_{\gamma}'} - \frac{1}{E_{\gamma}}\right)$$

- 3. Estimate e⁻ locations as:
 - [X;Y] from cluster centroids,
 - Z from Δ ToA depth reconstruction.
- 4. Project multiple cones (defined by β and locations).
- 5. Source of γ -rays lies at cone intersection.

Bias

4 e MMNNN e

Source

¹⁹²Ir Simulation

- Simulated 85K events using Allpix², Geant4.
- Parameters:
 - Single point source, gaussian profile with 100 µm width.
 - Placed 15 cm in front of Timepix3 (CdTe, 1 mm thick).
 - Not true ¹⁹²Ir spectrum, only a single line (316 keV).

¹⁹²Ir Simulation: spectrum

¹⁹²Ir Simulation: projection

¹⁹²Ir Simulation: improvement?

¹⁹²Ir Measurement

- Processed 1M events measured at BRT (Brno) in July 2020.
- Parameters:
 - Single point source, activity 140 GBq, pellet with 3.5 mm width.
 - Placed 70 cm in front of Timepix3 (CdTe, 1 mm thick).
 - Only a selected subset of data, have more files available.

¹⁹²Ir Measurement: spectrum

¹⁹²Ir Measurement: projection

¹⁹²Ir Measurement: projection

10

(performed in collaboration with Petr Smolyanskiy, Anna Odložilíková, MOU)

...but if we examine cones that contribute to the desirable (central) part of the response, we discover a problem:

- Low β cones come from this region:
- XRF (22 keV) overlaps with scattering events and causes fake coincidences.

¹⁹²Ir Measurement: projection

⁵⁷Co Measurement

(performed in collaboration with Petr Smolyanskiy, Jiří Zajíček)

- Processed 1M events measured at IEAP in October 2020.
- Parameters:
 - Single point source, activity 145 kBq, pellet with 2 mm width.
 - Placed 36 mm in front of Timepix3 (CdTe, 1 mm thick).
 - Only a selected subset of data, have more files available.

⁵⁷Co Measurement: spectrum

(performed in collaboration with Petr Smolyanskiy, Jiří Zajíček)

⁵⁷Co Measurement: projection

(performed in collaboration with Petr Smolyanskiy, Jiří Zajíček)

14

- Response not localized at all.
- Narrowing the selection region has no significant effect.

- Wanted to see influence of uncertainties on projection.
- Fast algebraic simulation:
 - Correct distribution of β .
 - Perfect coincidence assignment.
 - No material effects.
 - No detector response.
- Confirmed projection accuracy.
- Started introducing various uncertainties.

Projected 5000 cones Plane: 200 x 200 cells at 70 cm Simulated algebraically (with Klein-Nishina)

Projected 5000 cones Plane: 200 x 200 cells at 70 cm Simulated algebraically (with Klein-Nishina)

Projected 5000 cones Plane: 200 x 200 cells at 70 cm Simulated algebraically (with Klein-Nishina)

Conclusion

- Simulation:
 - We can fully reconstruct point sources with \approx 1 mm error at 15 cm.
 - Gain can be increased by improving S/A cluster assignment.
- Measurements:
 - XRFs appear to be the largest background.
 - Even with XRFs suppressed, we do not see localized response.
- Spoiler effect in measurements that we are not simulating?
- Next steps: identify and include the missing phenomenon in simulations, re-evaluate, devise compensation strategy.

Thank you for listening!

Petr Mánek, petr.manek@utef.cvut.cz

Find these slides online: https://bit.ly/pm_cc_nov2020

